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Abstract. One of the biggest challenges in current and future time-domain surveys is to extract
the objects of interest from the immense data stream. There are two aspects to achieving this goal:
detecting variable sources and classifying them. Difference imaging provides an elegant technique
for identifying new transients or changes in source brightness. Much progress has been made in
recent years toward refining the process. We discuss a selection of pitfalls that can afflict an auto-
mated difference imagine pipeline and describe some solutions. After identifying true astrophysical
variables, we are faced with the challenge of classifying them. For rare events, such as supernovae
and microlensing, this challenge is magnified because we must balance having selection criteria
that select for the largest number of objects of interest against a high contamination rate. We discuss
considerations and techniques for developing classification shemes.
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INTRODUCTION

The field of astronomy is being revolutionized by wide-field ground-based optical and
infrared surveys. The days when astronomical research was done using data taken over
the course of a few nights on a single, large, classically scheduled telescope is giving way
to research experiments done with data from large surveys inarchives and databases.
In the 1990’s, several microlensing surveys towards the LMC(e.g. MACHO, OGLE,
EROS) provided the first coherent wide-fieldand time-domain datasets. Such wide-field
surveys have been made possible not only by the tremendous progress in instrumen-
tation, but also by technological and data management advances. Future surveys like
Pan-STARRS, and LSST promise to have a nightly data yield in terabytes and total ac-
cumulated data in petabytes. As a community our challenge isto develop systems that
can handle this flood of data. In particular, in the time-domain, it is important that the
detection and classification of a transient has rapid turn-around in order to trigger follow-
up observations. In this paper we discuss how to extract a fewrare events from a sample
of millions. The first important step is to minimize false detections due to instrument or
reduction artifacts. Once we’ve identified true astrophysical transients, we are faced with
the challenge of classifying them. Throughout this paper, we will use examples from the
ESSENCE[1] and SuperMACHO[2] projects, two time-domain surveys, to illustrate the
concepts.
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FIGURE 1. ESSENCE difference image: The left panel is the template in the I band from 2003-12-
01, the middle panel from 2006-09-10, and the right panel is the difference image. The difference image
shows a supernova that is buried in the galaxy in the originalimages.

ELIMINATING FALSE DETECTIONS IN DIFFERENCE IMAGE
ANALYSIS

Difference imaging is most commonly used to detect transients and determine their light
curves. If difference imaging is not done carefully, however, the number of false detec-
tions due to instrument and reduction artifacts can outnumber real detections by several
orders of magnitude. In the following, we describe the difference imaging process and
how false detections can be minimized.

Difference Image Analysis

The principle of difference image analysis (DIA) is straight-forward: Subtracting one
epoch (denoted as template) from another gives the difference between the two images,
the signal of interest for time-domain surveys. In practiceit is rather complicated.
The first step is to reduce all of the images in a standardized way (bias subtraction,
flattening). The next steps are the more difficult ones: Before subtraction, the images
need to be aligned, and their PSFs matched. These last steps have rapidly evolved in
the last few years. The first implementation was by [3] who introduced a method that
registered images, matched the point spread function (PSF), and matched the flux of
objects in order to detect transients. Derivatives of DIA have been widely applied in
various projects (e.g., SuperMACHO[2, 4]; ESSENCE[1]; CHFT SNLS[5]). Since the
PSF varies over the field-of-view due to optical distortionsor out-of-focus images, for
example, it is essential to use a spatially varying kernel [6, 7].

DIA is most useful for detecting and analizing transients against complex back-
grounds such as galaxies or crowded fields. Figure 1 shows thepower of DIA on an
example from the ESSENCE SN search: The difference image (right panel) shows a SN
which would have been very difficult to detect in the originalimage (middle panel) since
it is buried within the galaxy. DIA can similarly be used to detect transients in crowded
fields and against a background of unresolved stars.
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FIGURE 2. An example of a bleed of saturated pixels from a bright star. The top panel show the
original image, the deprojected image, and the resulting difference image after subtracting the template.
Notice that the saturated pixels spread, increasing the number of “bad” pixels. By using simple, linear
interpolation to more accurately estimate the sky flux at these pixels (lower panel, left image), we can
reduce the contribution from the saturated pixels and render more pixels usable (lower panel, middle and
right image).

Mask Spread due to Image Alignment and PSF matching

Before the images can be subtracted, they need to be aligned.Regardless of the
method, alignment always involves the convolution of at least one of the images, i.e.
the output pixel is a weighted sum of the input pixels within akernel of a certain size. In
theory, any output pixel which has a bad input pixel (e.g. a saturated pixel or a pixel from
a bad column) within its kernel is unreliable and must be masked. As a result the number
of masked, unusable pixels increases; the masks “spread”. The upper panel of Figure 2
shows a cutout from an image (left panel), its deprojection so that it is aligned with the
other image (middle panel), and the mask image of the deprojection (right panel). The
white horizontal line is a bleed from a saturated star. The image convolution used for
alignment introduces a “ringing” at the edge of the bleed. This ringing is due to the fact
that these saturated pixels have flux values much greather than the value corresponding
to the number of photons incident from the sky; consequently, even assigning smaller
weights to these “bad” pixels does not adequately mitigate their effect. The contribution
from their pixel values is simply too large and they are masked out (white in upper right
panel).

The lower panels show the same deprojection, but this time the pixel values of the
bleed are interpolated prior to the convolution. This interpolation does not need to be
perfect or sophisiticated, in this case we just linearly interpolate between the upper and
lower pixel value. The “ringing” then disappears (middle panel lower row). Since the
pixel values of the originally saturated pixels now have more realistic values, output
pixels with contributions from these “bad” pixels can now beused if the weight of the
contributions is small. In the right lower panel, pixels forwhich the contribution from
bad pixels is smaller than 10% are light grey and can still be used, whereas pixels with a
larger contribution are white. These images demonstrate how interpolating can minimize
the spreading of the masks.

Since the subsequent PSF matching is another convolution that spreads the mask even
more, interpolating bad pixel values can greatly reduce thenumber of unusable pixels in
the final difference image. Figure 3 shows an example from theSuperMACHO survey.
The upper panels show an image from 2003-12-01 and 2002-12-10 from left to right,
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FIGURE 3. The upper panel shows SuperMACHO images from 2003-12-01 and2002-12-10 from left
to right, respectively. In the lower panel, the corresponding difference and mask images are shown from
left to right, respectively.

FIGURE 4. The upper panel shows an image of a very bright, saturated star (left panel), the difference
image (middle panel), and the mask image (right panel). In the lower panel, the bright star and its spikes
are masked, greatly reducing false detections.

respectively. Note that the image from 2003-12-01 has significantly worse “seeing”
than the image from 2002-12-10. This leads to a significant spreading of the masks
(grey and white pixels in lower right panel) since the size ofthe convolution kernel is
proportional to the larger PSF size of the two images. Interpolating the saturated pixels
before aligning the images renders a greater fraction of these pixels usable (grey in lower
right panel). Without the interpolation, the transient indicated with the red circle could
not have been detected.

Saturated Stars

As described above, interpolation to estimate saturated pixel values enables a reduc-
tion in the number of masked pixels in the difference image. Conversely, in some cases
extra masking can all but eliminate false detections. An example is shown in Figure 4.
The upper panel shows an image of a very bright, saturated star (left panel), the differ-
ence image (middle panel), and the mask image (right panel).The difference image in
the middle panel shows the halo of the saturated star as well as the spikes, both which
are only incompletely subtracted. These residuals often trigger low S/N detections. In
general, such bright stars are rare, and masking both the star and its spikes, as shown in
the lower middle panel, greatly reduces false detections atthe small cost of increasing
the fraction of masked pixels by less than 1%.

After aligning the images and masking saturated pixels, we can apply standard dif-
ference imaging techniques to obtain difference images that can then be used to detect
transients.
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FIGURE 5. The left plot shows the difference image lightcurve of a transient from the SuperMACHO
survey. The right plot shows the corresponding forced photometry lightcurve, with microlensing and SN
fits overplotted.

Detecting Point Sources in Difference Images

One of the main problems with the image differencing approach is that there are more
residuals, e.g. cosmic rays and bleeds, than genuinely variable objects in the difference
image. As a result a standard profile-fitting software package, like DoPHOT [8], has
problems determining the proper PSF to use for photometry inthe difference image.
Instead we use a customized version of DoPHOT on the difference images that forces the
PSF to be the one determined for the original, flattened, unconvolved image. Applying
thisa priori knowledge of the PSF also helps to guard against bright falsepositives, such
as cosmic rays and noise peaks, which generally do not have a stellar PSF.

The left panel of Figure 5 shows an example of a difference image lightcurve of a
transient from the SuperMACHO survey (filled red circles). The trigger in the Super-
MACHO survey is 3 detections with “signal-to-noise” (S/N)≥ 5. With only five detec-
tions having a S/N≥ 5, however, one can see that not much can be said about the nature
of the event. To improve the light curve, we note that unlike standard images, difference
images have two important properties:

• Difference images are largely empty of sources as most of theobjects are non-
varying. The likelihood that two sources are close enough that they need to be
fitted simultaneously is very small.

• The event position can be determined from the trigger detections.

This opens up the possibility to do “forced” photometry, i.e. photometry is forced in all
difference images at the event position. The blue circles inthe right panel of Figure 5
show the forced photometry of the example event. Clearly, the event lightcurve is now
much more constrained, giving rise to the difference imaging expression, “Zero flux is
not zero info!”

Detecting Extended Sources in Difference Images

Nearly all astrophysical transients are point sources. Oneof the rare exceptions are
scattered-light echoes, which is light of a variable sourcereflected by dust. The study of
such light echoes, in particular light echoes of SNe, provide a host of newly-recognized
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FIGURE 6. Light echo arclets associated with Tycho. The orientation is N up and E to the left and the
images are 325 x 250 arcseconds. The left and middle panels show the first epoch image from 20 October
2006, and the second epoch image from 13 December 2007, respectively. The right image is the difference
image. Areas of negative flux, where the echo has moved from its location in the earlier October image,
appear dark; and areas of positive flux, representing the December 2007 location, appear white.

observational benefits which have only just begun to be exploited including: the capacity
to understand the connection between remnant properties and the outburst spectral
type, access to observables related to asymmetric explosion properties, and geometric
distances [9, 10, 11]. The challenge is to find these light echoes, since they are in general
faint (V > 22.5mag/arcsec2) and often at angular distances to the source event of several
degrees. Figure 6 shows one of the brightest light echoes associated with the Tycho SN
[11].

The current searches for light echoes [11] use visual inspection to find light echoes.
This is of course not doable in future large scale surveys like PanSTARRS, Sky Mapper,
and LSST. The problem is that standard photometric packagesare optimized to find
centrally concentrated objects like stars and galaxies. However, light echoes often do not
have such a peak, but they rather are extended arclets. In thecase of light echoes from
ancient Galactic SNe, these arclets can have width’s and length’s of tens or arcseconds.
Therefore what is needed is a photometry software that internally either bins or smoothes
the data (binning or smoothing the images is prohibitive forlarge surveys due to the disk
space and CPU requirements). If the source event position isknown, then the smoothing
kernel optimally has the shape of an arclet of a circle whose center is at the source event
position.

LIGHT CURVE FITTING AND CLASSIFICATION

The light curve provides the essential information for classifying events in the time
domain. While ideally the light curve will contain data frommany bands which provides
sensitivity to changes in the SED, multiple images must be traded off against imaging
more sky or going deeper to detect more and fainter sources. For this reason, the
SuperMACHO survey was primarily conducted in a single band.For SuperMACHO in
particular, and time domain surveys in general, analysis ofthe light curveshape provides
the primary parameters for classification. At it’s most basic, this analysis requires fitting
the light curve to analytic models or templates describing the transient of interest. In
many cases, however, either a model is unavailable, or because of low signal-to-noise
or sparse temporal coverage the fit is not sufficient to discriminate between different
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classes of transients. The lower panel of Figure 5 shows a microlensing and SN fit to a
transient detected in the SuperMACHO survey, which have very similar χ2. In these
cases parameters describing the light curve (e.g. rate-of-rise, time-to-maximum) can
provide a suite of attributes for developing classificationschema (see [12] for a more
detailed discussion).

The advent of large data sets has spurred an explosion in development of classification
schemes over the past decade. This conference has demonstrated the usefulness of
many of these techniques. For classification of rare events,however, these techniques
are not always appropriate. Support Vector Machines, for example, require ana priori
knowledge of the relative frequencies of the events being studied. Often the event rate
or the full composition of the background population is unknown. Principal Component
Analysis can be used to define a parameter space where the events of interest reside.
If these is strong overlap with another transient, however,this can make classification
difficult.

Another concern is that when classifying rare events, the “standard of proof” must
be higher. This is particularly true when the rate of the rareevent is much lower than
similar objects (e.g. type Ia SNe vs. microlensing in the SuperMACHO survey). In
this scenario we must balance loose selection criteria thatwill keep the maximum
number of the events of interest, “high efficiency”, againstswamping the events of
interest with a more frequent event type, “high contamination”. In addition, if the event
is particularly rare (e.g. tidal disruption events), then selection criteria that intuitively
match our understanding of the underlying physical properties can bolster acceptance of
the results. For example in the SuperMACHO project, becauseSNe Ia have asymmetric
light curves while microlensing is a symmetric phenomenon,selection criteria that
explore light curve symmetry provide both a robust and intuitive method for event
classification.

Ultimately any classification scheme will not provide 100% accuracy. How one should
proceed depends upon the scientific question being asked. For a project such as Super-
MACHO where the goal is to understand the rate of microlensing, the scientific result
depends critically upon a quantitative understanding of the detection efficiency and con-
tamination rate. For a projuct such as ESSENCE, the rate of SNe Ia does not signifi-
cantly impact the result; however, contamination from other types of SNe or transients
does. In this instance additional follow-up for classification, particularly spectroscopic,
is warranted.

CONCLUSIONS

Difference imaging can provide a powerful tool for identifying rare transients, even
against complex backgrounds. Increasing the reliability of difference image detections,
however, is critical for large surveys due to the large volume of data and need for
fast turn-around. We discuss several techniques that both decrease the number of false
detections from difference imaging and also increase the usable area of the images.
For time-domain surveys, difference image analysis provides only the first step for
identifying and classifying transients. In addition, obtaining reliable and complete light
curves through specialized photometry and classifying objects based on their variability
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are critical to extracting the science from these projects.Simple techniques such as
using a fixed-PSF profile with a forced centroid can greatly improve difference flux light
curves. Developing classification schemes based on these light curves remains an area
of active research. We find that often the science goals will dictate which classification
sheme is most appropriate.
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